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The problem o f  the filtration to a well in a thin strained clay-containing seam with an abnormally high initial 

seam pressure is solved. The theological behavior of  the seam is described by the K e l v i n -  Voigt mc'del. T!ze 

drop in the f low rate of  the well and the decrease and rate of  decrease in the seam pressure arc c , lcu ia led  

for  different parameters of  the m o d e l  

In many  cases,  the abnormal ly  high seam pressure in oil pools can be due to clay compac!ion and  

dehydrat ion [1 ]. In modeling filtration in these pools, the substantial dependence of the permeability of the medium 

on the s t ressed-strained state (SSS) should be allowed for in the initial step of their working [2 ]. This  dependence  

is due not only to contracting of the initially undercompacted seam by the weight of overlying rocks [2 ] but also 

to the clay redistribution in pores in contraction. In accordance with this, the permeability of the network of 

channels along which a liquid moves can be represented as the product k(e) = ko(m) f (a) .  We will give some 

estimations of the range of change for k(O)/k(e) .  

If it is assumed that the strain that is experienced by the seam in operation is pure transverse,  it will be 

equal to a relative change in the medium volume. In straining, the volumes of the solid phase and clay are preserved,  

in practice; therefore  (m - m0) -- (1 - mo)O and ms = mos o. Let us assume that e = -0 .0 5 ,  m0 = 0.3. Then  m = 

0.265 and, in accordance with the Kozeni formula, ko(m) /ko(mo)  = ( m / m o ) 3  = 0.69. We note that, from the data 

of [21, this ratio is 0.67. The effect of the clay redistribution on k(e) can be estimated by the cubic relative 

permeability 

{ [ ( ~ )  = m a x  0 ,  _ a . )  j "  

Let the loss of the hydraulic connectivity of the conducting network occur for ~. -- 0.2. Then,  af ter  straining, the 

function f (o ) ,  for so = 0.3, 0.4, 0.5, and 0.71, takes on values of 0.78, 0.65, 0.47, and 0, the corresponding values 

of k(O)/k(e)  being 1.85, 2.23, 3.05, and ~.  Thus,  a strain change in the hydroconductivi ty of the seam with an 

abnormally high steam pressure depends strongly on the clay content in it and can be very significant. In what 

follows, the dependence k(e) ,  similarly to [2, 31, is taken as k(e) = k(0) exp (ae). 

We consider a horizontal l iquid-saturated uniform seam within the thickness of rocks at a distance from 

the free surface, which is much larger than the seam thickness. Let us consider that the seam is clay-containing 

and the liquid in it is under  high pressure. In accordance with the above, when this seam is opened with the well 

with the prescribed lower pressure, in the vicinity of the well, a distinct compaction of the porous matrix can occur, 

and the clay redistribution will be initiated in the pores. This will result in a substantial and,  what is more, 

irreversible increase in the filtration resistance and a viscoelastic behavior of the porous matrix. 

To fur ther  analyze the pressure fields in a seam and the well flow rate as functions of time, we state an 

axisymmetric interrelated problem of the SSS of rocks and filtration seam consolidation in well operation. The  rocks 

are modeled by a uniform elastic half-space, which is characterized by the Young modulus and Poisson coefficient, 

while the seam is modeled by the section parallel to its roof and floor [4, 5]. The  well axis coincides with the 
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vertical axis of a cylindrical coordinate system. The SSS of the elastic half-space obeys the equations of a linear 

theory of elasticity, which are written in displacements from the initial state. On the banks of the section, with 

allowance made for the filtration consolidation of the seam, there are conjugation conditions, the rheological 

properties of the seam being described by the Kelvin-Voigt  model with its Young modulus and coefficient, which 

are responsible for the viscous component of seam strains. Thus,  the boundary conditions of the problem take the 

following form: 

z = h :  C r z = T r z = O ,  

Z = 0 : [~z]  = l r rz]  = O ,  [U r] = O ,  

E l  + i l l  e = a z + P "  

For the described statement of the problem, with the constraints/~l = 0 the integral operator,  which makes 

it possible to efficiently calculate the strain e = t [p(r) ] with the prescribed distribution of the pressure p = p(r) in 

the seam-section,  was obtained in [5]. In a similar manner ,  we can relate t ransverse strains of the section 

boundaries to the indicated pressure distribution in the case/~l ;~ 0, also. 

Let us set the initial p ressure  in an und i s tu rbed  seam equal to zero.  We in t roduce  the following 

dimensionless quantities: 

p r xt o eE lUl x 
P - -  , p = - - ,  * -  , e -- , f l - -  , 

Po R R 2 Po E1 R2 

a = 
4R (1 - v 2) E l k (g 0) 

E ' K (e 0) - k (0) " 

Then we obtain the following integrodifferential equation to determine the transverse seam strains as functions of 

pressure: 

1 
eO (p) + fl de 0 aE f ~p (~, r) A (~, P) d~ ,  

0-r - -  - -  E I 
P0 

O) 

A (~,p) = 

2 (~) 2a2 ~ lo(pY) Ko(~y) 
- ~ K  2 2 

o y + a  

~ o p ,  ~ < p  , 

dy,  p < ~ ,  (2) 

with the initial condition 

0 
60, 0) = 0 .  (3) 

Plane-radial filtration in the strained seam is described by the nonlinear parabolic equation [6 1 

1 0 { 0P} OP 
p 0/9 pK  I~ ° (P) ] -ffff - 0T " (4) 

Let the external  boundary of the seam be impermeable to a liquid. Then  Eq. (4) corresponds to the initial 

and boundary conditions: 
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Fig. 1. Dimensionless pressure at an impermeable boundary  of a seam vs. 

dimensionless lime [I) a = 1; 2) 3; 3) 5]  forp0  = 10-3; a = 20; fl = 1. 

Fig. 2. Dimensionless time of a l / e  decrease in the ex te rna l -boundary  

pressure relative to the well pressure as a function of the strain sensitivity of 

the permeability of a seam [1) fl = 0; 2) 1; 3) 2; 4) 5] fo rp0  = 10 -3  , a = 80. 
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Fig. 3. Dimensionless flow rate of a well vs. dimensionless time [ I) a = I ; 2) 

3; 3) 5]  fo rp0  = 10-3; a = 80. 

P ( p ,  o ) = o ,  P ( P o , ~ )  = - l , r, [ ~ 0 . 

~ l "  [ p=l 
(5) 

The nonlinear boundary problem (1)-(5) was solved numerically. Calculations were performed using a 

difference scheme with a weight of 0.6 [7 ] for the fixed Po and a = 40E I /E .  Their  results are presented below in 

Figs. 1-3. 

According to Fig. l, the larger the a and hence the sensitivity of the permeability of the seam to its strains, 

the more slowly the pressure at its external boundary drops. 

Let T = T be the time from the instant • = 0, in which the pressure attains the value p = - 1 / e .  Figure 2 

illustrates how the indicated time varies as a function of the parameter a for fixed values of ft. A growth in strain 

sensitivity for the seam leads to an increase in the time T, the increase in fl (i.e., "viscosity" of the seam) decreasing 

the growth rate for T. 

Figure 3 shows the behavior of the dimensionless flow rate of the well 

Q = exp (cte O) - ~  P:Po 

with time. It is evident that, for fixed a,  the well flow rate increases with the viscous component of seam strains. 

N O T A T I O N  

k and K, dimensional and dimensionless permeability of the channel network; k0, absolute permeability of 

the porous medium; f, relative permeability of conducting channels; m, total porosity; m0, porosity in the absence 
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of strains; cr = 1 - s; s, clay saturation of pores; so, initial clay saturation of pores; or., critical value of the parameter  

a which corresponds to the loss of the hydraulic connectivity of the conducticting channel network; e, t ransverse 

strain of the seam; 0, relative change in the medium volume; E and v, Young modulus and Poisson coefficient of 

the elastic half-space; r and p, dimensional and dimensionless longitudinal coordinates of the cylindrical system; 

z, vertical coordinate;/~l and fl, dimensional and dimensionless coefficients on the viscous component  of the seam 

strains; h, depth of seam occurrence; ~, seam thickness; cr z and Trz, components of the stress tensor; Ur, component  

of the displacement vector; [ ], symbol of an abrupt change in the quanti ty in crossing the section; t and  T, 

dimensional and dimensionless times; p and P, dimensional and dimensionless pressures; P0, modulus of pressure 

on the well contour; P0, dimensionless radius of the well contour; R, radius of the external  boundary  of the seam; 

K(p/~), total elliptic integral; lo(py) and Ko(~y), modified Bessel functions; t~, piezoconductivity of the seam; T, 

dimensionless time of an 1 /e  pressure drop at the external boundary of the seam relative to the well pressure; Q, 

dimensionless flow rate of the well; a ,  sensitivity coefficient for the permeabili ty of the seam to its strains. 
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